
Hyperspectral Image Compression on Reconfigurable Platforms1

Thomas W. Fry

Department of Electrical Engineering
University of Washington

Seattle, WA 98195
tom@tomfry.com

Scott Hauck
Department of Electrical Engineering

University of Washington
Seattle, WA 98195

hauck@ee.washington.edu

ABSTRACT
NASA’s satellites currently do not make use of
advanced image compression techniques during data
transmission to earth because of limitations in the
available platforms. With the advent of Field
Programmable Gate Arrays (FPGAs) and Adaptive
Computing technologies it is now possible to construct a
system, which compresses the data stream before down
linking. Our work is part of a NASA-sponsored study
on the design and implementation of FPGA-based
Hyperspectral Image Compression algorithms for use in
space.

In this paper we present an implementation of the
SPIHT image compression routine in reconfigurable
logic. SPIHT is a progressive wavelet-based image
compression coder. It first converts the image into its
wavelet transform and then transmits information about
the wavelet coefficients. We discuss both memory
storage considerations and optimizations to the original
SPIHT algorithm for use in hardware. To fully utilize all
of the memory bits for each wavelet coefficient and
reduce memory usage, we introduce the concept of
Variable Fixed-Point representation.

The paper also presents a modification to the original
SPIHT algorithm needed to parallelize the computation.
The architecture of the SPIHT engine is based upon
Fixed-Order SPIHT, developed specifically for use
within adaptive hardware. For an N x N image, Fixed-
Order SPIHT may be calculated in N2/4 cycles. Square
images which are powers of 2 up to 1024 x 1024 are
supported by the architecture we implemented. Our
system was developed and tested on an Annapolis
Microsystems WildStar board populated with Xilinx
Virtex-E parts.

1. Introduction
As NASA deploys satellites with more sensors,
capturing an ever-larger number of spectral bands, the

1 This paper is an abstract of the full paper: T. Fry, S.
Hauck “Hyperspectral Image Compression on
Reconfigurable Platforms”, IEEE Symposium on Field-
Programmable Custom Computing Machines, 2002.

volume of data being collected is beginning to outstrip
satellite’s transmition channels. At the same time the
volume of data being collected is growing at a faster
rate than improvements in transmition capabilities,
making methods of compressing images prior to down
linking necessary.

Current technologies are unable to provide NASA with
a viable platform to process data in space. Software
solutions suffer from performance limitations and power
requirements. At the same time traditional hardware
platforms lack the required flexibility needed for post-
launch modifications. By implementing an image
compression kernel in a reconfigurable system, it is
possible to overcome these shortcomings. Since such a
system may be reprogrammed after launch, it does not
suffer from conventional hardware’s inherit
inflexibility. Yet the algorithm is computing in custom
hardware and can perform at the required rates, while
consuming less power than a traditional software
implementation.

Our work is part of a NASA-sponsored investigation
into the design and implementation of a space-bound
FPGA-based Hyperspectral Image Compression
algorithm. We have selected the Set Partitioning in
Hierarchical Trees (SPIHT) compression routine and
optimized the algorithm for implementation in
hardware. This thesis describes our work towards this
effort and provides a description of our results.

2 Description of the Algorithm

SPIHT is a wavelet-based image compression coder. It
first converts the image into its wavelet transform and
then transmits information about the wavelet
coefficients. The decoder uses the received signal to
reconstruct the wavelet and performs an inverse
transform to recover the image. We selected SPIHT
because it displays exceptional characteristics over
several properties all at once [4]. They include:

• Good image quality with a high PSNR
• Fast coding and decoding
• A fully progressive bit-stream
• Can be used for lossless compression
• May be combined with error protection
• Ability to code for exact bit rate or PSNR

SPIHT is a method of coding and decoding the wavelet
transform of an image. By coding and transmitting
information about the wavelet coefficients, it is possible
for a decoder to perform an inverse transformation on
the wavelet and reconstruct the original image. The
entire wavelet does not need to be transmitted in order
to recover the image. Instead, as the decoder receives
more information about the wavelet, the inverse-
transformation will yield a better quality reconstruction
of the original image [3].

SPIHT codes a wavelet by transmitting information
about the significance of a pixel compared to some
threshold, thus implying some information about the
pixel’s value. To take advantage of redundancies within
a wavelet, SPIHT transmits information stating whether
a pixel or any of its descendants are above a threshold.
At the end of each pass the threshold is divided by two
and the algorithm continues. By proceeding in this
manner, information about the most significant bits of
the wavelet coefficients will always precede information
on lower order significant bits, which is referred to as
bit plane ordering.

In addition to transmitting wavelet coefficients in a bit
plane ordering, the SPIHT algorithm develops an
individual order to transmit information within each bit
plane. The ordering is implicitly created from the
threshold information discussed above and by a set of
rules which both the encoder and decoder agree upon.
Thus each image will transmit wavelet coefficients in a
variable order dependent upon the image’s wavelet
transform. Slightly better Peak Signal to Noise Ratios
(PSNR) are achieved by using this dynamic ordering of
the wavelet coefficients. The trade-off for the
improvement are increased run-times for both the
encoder and decoder since the order must be considered.

3 Design Considerations and
Modifications

In order to fully take advantage of the high performance
a custom hardware implementation of SPIHT can yield,
the software specifications must be examined and
adjusted where they either perform poorly in hardware
or do not make the most of the resources available. Here
we discuss both memory storage considerations and
optimizations to the original SPIHT algorithm for use in
hardware.

3.1 Variable Fixed-Point

The discrete wavelet transform produces real numbers
as wavelet coefficients. Traditionally FPGAs do not
employ the use of floating-point numbers because of
their lower performance and consumption of hardware
resources. Since coefficients at each wavelet level of the

DWT have a fixed numerical range, we opted for a
fixed-point numerical representation.

One property of the DWT is the numerical range of
numbers possible within each wavelet level is fixed, yet
varies between levels due to the 2-D low-pass FIR filter.
As a result, coefficients at various wavelet levels require
a variable number of bits above the decimal point to
cover their possible ranges. Another property of the
DWT is the number of bits used to represent each
coefficient impacts the Peak Signal-to-Noise Ratio
(PSNR) of the resulting image. Figure 1 shows the
average PSNR of several images coded with a variable
number of bits. An assignment of 16 bits per coefficient
most accurately matches the full precision floating-point
coefficients used in software and was selected.

PSNR vs. bit-rate

0

20

40

60

80

100

0.0
5 0.5 0.9

5 1.4 1.8
5 2.3 2.7

5 3.2 3.6
5 4.1 4.5

5 5
5.4

5 5.9 6.3
5 6.8 7.2

5 7.7

Bitrate

PS
N

R

orig
bit16
bit15
bit14
bit14-h
bit14-l
bit13
bit12
bit11
bit10

Figure 1: PSNR vs. bit-rate for various coefficient

sizes

To fully utilize all the bits for each wavelet coefficient,
we introduce the concept of Variable Fixed-Point
representation. With Variable Fixed-Point we assign a
fixed-point numerical representation for each wavelet
level optimized for the expected data. In addition, each
representation differs from one another, meaning we
employ a different fixed-point scheme for each wavelet
level. Doing so allows us to optimize both memory
storage and I/O at each wavelet level to yield maximum
performance.

3.2 Fixed Order SPIHT

As discussed within Section 2 the SPIHT algorithm
computes a dynamic ordering of the wavelet
coefficients as it progresses. Such an ordering will yield
better image quality for bit-streams which end within
the middle of a bit-plane. The drawback of this ordering
is that every image will have a unique list order
determined by the image’s wavelet coefficient values.

Yet, the data that a block of coefficients contributes to
the final SPIHT bit-stream is fully determined by a set
localized information. Thus, every block of coefficients
may be calculated independently and in parallel of one

another. However, the order that a block’s data is
inserted into the bit-stream is not known since this order
is dependent upon the image’s unique ordering.
However the algorithm employed to calculate the
ordering of coefficients is sequential in nature and can
not be parallelized in hardware, significantly limiting
the throughput of any implementation.

We propose a modification to the original SPIHT
algorithm called Fixed Order SPIHT. In Fixed Order
SPIHT the order in which blocks of coefficients are
transmitted is fixed before hand. Doing so removes the
need to calculate the ordering of coefficients within
each bit-plane and allows us to create a fully parallel
version of the original SPIHT algorithm. Such a
modification increases the through put of a hardware
encoder by greater than an order of magnitude, at the
cost of a slightly lower PSNR within each bit-plane
(approximately 0.1 – 0.2 dB). For a more complete
discussion on Fixed Order SPIHT refer to Fry et al. [2].
4 Architecture
4.1 Target Platform

Our target platform is the WildStar FPGA processor
board developed by Annapolis Micro Systems [1]. The
board consists of three Xilinx Virtex 2000E FPGAs. It
operates at rates up to 133MHz with 48MBytes of
memory available through 12 independent ports.

4.2 Design Overview

Our architecture consists of three phases: Wavelet
Transformation, Maximum Magnitude Calculation and
Fixed Order SPIHT Coding. Each phase is implemented
in one of the three Virtex chips. By instantiating each
phase on a separate chip, separate images can be
operated upon in parallel. Data is transferred from one
phase to the next through the shared memories. By
coding a different image in each phase simultaneously,
the throughput of the system is determined by the
slowest phase, while the latency of the architecture is
the sum of the three phases. Figure 2 illustrates the
architecture of the system.

PE1
Wavelet

PE0
Magnitude

PE2
SPIHT

Wavelet
Coefficients

Wavelet
Coefficients
Magnitude
Information

Figure 2: Overview of the architecture

5.3 DWT Phase

For the DWT phase we designed a folded architecture
which processes one dimension of a single wavelet
level. Pixels are read in horizontally from one memory
port and written directly to a second memory port. In

addition pixels are written to memory in columns,
inverting the image along the 45-degree line. By
utilizing the same addressing logic, pixels are again read
in horizontally and written vertically. However, since
the image was inverted along its diagonal, the second
pass will calculate the vertical dimension of the wavelet
and restore the image to its original orientation. Each
dimension of the image is reduced by half and the
process iteratively continues for each wavelet level. To
speed up the DWT, the design reads and writes four
rows at a time. Figure 3 illustrates the architecture of the
discrete wavelet transform phase.

Since every pixel is read and written once and the
design processes four rows at a time, for an N x N size
image both dimensions in the lowest wavelet level will
compute in N/4 clock cycles. Similarly, the next wavelet
level will process the image in ¼ the number of clock
cycles as the previous level. With an infinite number of
wavelet levels the image will process in:

2

1

2

4
3

4
2 NN

l
l ⋅=

⋅∑
∞

=

Thus bounding the runtime of the DWT engine is
bounded by ¾th a clock cycle per pixel in the image.

Read
Address Logic

Row Boundary
Reflection

Row 1
Low Pass

High Pass

Variable Fixed
Point Scaling

Row Boundary
Reflection

Row 2
Low Pass

High Pass

Variable Fixed
Point Scaling

Row Boundary
Reflection

Row 3
Low Pass

High Pass

Variable Fixed
Point Scaling

Row Boundary
Reflection

Row 4
Low Pass

High Pass

Variable Fixed
Point Scaling

Data Selection
and Write

Address Logic

LL Subband Mean
Calculation and Subtraction

Write
Memory Port

Read
Memory Port

DWT Level
Calculation

and
Control Logic

Read-Write Crossbar

Figure 3: DWT Architecture

5.4 Maximum Magnitude Phase

The maximum magnitude phase calculates and
rearranges the following information for the SPIHT
phase. 1) The maximum magnitude of each of the 4
child trees 2) The maximum magnitude of the current
tree 3) Threshold and Sign data of each of the 16 child
coefficients and 4) Re-orders the wavelet coefficients
into a Morton Scan ordering. It does do by
implementing a stack and reads each pixel in a depth
first search ordering so that child pixels are always read
before parent pixels.

5.5 SPIHT Phase

The final SPIHT Coding phase essentially computes the
parallelize algorithm. Coefficient blocks are read from
the highest wavelet level to the lowest. As information
is loaded from memory it is shifted from the Variable
Fixed Point representation to a common fixed point
representation for every wavelet level. Once each block
has been adjusted to the same numerical representation,
the parallel version of SPIHT is used to calculate what
information each block will contribute to each bit plane.

The information is grouped and counted before being
added to three separate variable FIFOs for each bit
plane. The data which the variable FIFO components
receive varies in size, ranging from zero bits to thirty-
seven bits. The variable FIFOs are used to arrange the
block data into regular sized 32-bit sized words for
memory accesses. Care is also taken to stall the
algorithm if anyone of the variable FIFOs becomes too
full. The block diagram for the SPIHT coding phase is
given in Figure 4.

Address
Generator and
Control Logic

Read
Memory Port

#1

Read
Memory Port

#2

Shift Data

Calculate
Bit-Plane 21

…
LIP
Data

LIS
Data

LSP
Data

Calculate
Bit-Plane 0

LIP
Data

LIS
Data

LSP
Data

Group
Data

Group
Data

Group
Data

Variable
FIFO

Variable
FIFO

Variable
FIFO

Group
Data

Group
Data

Group
Data

Variable
FIFO

Variable
FIFO

Variable
FIFO

Dynamic
FIFO

Scheduler

Select and Read FIFOs

…

LIP and LIS
Address

Generator

Write
Memory Port

#1

LSP
Address

Generator

Write
Memory Port

#2

Figure 4: SPIHT Coding Phase Block Diagram

6 Design Results
Our system was designed using VHDL with models
provided from Annapolis Micro Systems to access the
PCI bus and memory ports. Simulations for debugging
purposes were done with ModelSim EE 5.4e from
Mentor Graphics. Synplify 6.2 from Synplicity was
used to compile the VHDL code and generate a net list.
The Xilinx Foundation Series 3.1i tool set was used to
both place and route the design. Lastly the peutil.exe
utility from Annapolis Micro Systems generated the
FPGA configuration streams.

Table 1 shows the speed and runtime specifications of
our architecture. All performance numbers are measured
results from the actual hardware implementations. Each
phase computes on separate memory blocks, which can
operate at different clock rates. The design can process
any square image where the dimensions are a power of
2: 16 by 16, 32 by 32 up to 1024 by 1024.

We compared our results to the original software
version of SPIHT provided on the SPIHT website [4].
The comparison was made without arithmetic coding
since our hardware implementation currently does not
perform any arithmetic coding on the final bit-stream.
An Ultra 5 SPARC workstation was used for the
comparison and we used a combination of satellite
images from NASA’s website and standard image
compression benchmark images. The software version
of SPIHT compressed a 512 x 512 image in 1.14
seconds on average. The wavelet phase, which
constrains the hardware implementation, computes in
2.48 milliseconds, yielding a speedup of 457 times for
the SPIHT engine. In addition, by creating more
parallelized implementation of the wavelet phase,
further improvements to the runtimes of the SPIHT
engine are possible.

7 Conclusions
In this paper we demonstrated a viable image
compression routine on a reconfigurable platform. We
showed how by analyzing the range of data processed
by each section of the algorithm, it is advantageous to
create optimized memory structures as with our
Variable Fixed Point work. Doing so minimizes
memory usage and yields the utmost usefulness of
transferred data. (i.e. each bit transferred between
memory and the processor board directly impacts the
final result.) In addition our Fixed Order SPIHT work
illustrates how by making slight adjustments to an
existing algorithm, it is possible to dramatically increase
the performance of a custom hardware implementation
and simultaneously yield essentially identical results.
With Fixed Order SPIHT the throughput of the system
increases by more than two orders of magnitude while
still matching the original algorithm’s PSNR curve.

Table 1: Performance Numbers

Phase Clock Cycles per
512x512 image

Clock Cycles
per Pixel

Clock Rate Throughput FPGA Area

Wavelet 182465 3/4 75 MHz 100 MBytes/sec 62%
Magnitude 131132 1/2 73 MHz 146 MBytes/sec 34%

SPIHT 65793 1/4 56 MHz 224 MBytes/sec 98%

Our SPIHT work is part of an ongoing development
effort funded by NASA. Future work will to address
how lossy image compression will affect downstream
processing. The level of lossy image compression that is
tolerable before later processing begins to yield false
results needs to be analyzed and dealt with. Lastly
improvements to SPIHT and the consequences to a
hardware implementation will be studied. Modifications
to Fixed Order SPIHT including adding error protection
to the bit-stream and region of interest coding will be
considered.

8 References
[1] Annapolis Microsystems. WildStar Reference

Manual, Maryland: Annapolis Microsystems, 2000.

[2] T. W. Fry, Hyper Spectral Image Compression on
Reconfigurable Platforms, Master Thesis,
University of Washington, Seattle, Washington,
2001.

[3] A. Said, W. A. Pearlman, “A New Fast and
Efficient Image Codec Based on Set Partitioning in
Hierarchical Trees,” IEEE Transactions on Circuits
and Systems for Video Technology, Vol. 6, pp 243 -
250, June 1996.

[4] A. Said, W. A. Pearlman, “SPIHT Image
Compression: Properties of the Method”,
http://www.cipr.rpi.edu/research/SPIHT/spiht1.htm
l

